	[image: Golrang System | گلرنگ سیستم | LinkedIn]
	

Power BI
	
[image: ‪Power Bi Logo, Data, Branding, Business Intelligence, Insights PNG‬‏]

	Page: 8 of  8
	Rev:01
	Document Title: BI_Session2












DAX










	GNG SBU
	
	Date
	Rev

	Approved
	Checked
	Prepared
	Mojdeh Taghavi
	1404/10/08
	01




خلاصه جلسه قبل: 
با سیب و موز و خیارشور یکم دکس یادگرفتیم ولی انگاری استقبال نشد. 
کتاب دکس برای انسان ها به عنوان مرجع معرفی شد. در کتاب DAX for Humans، تاکید بر این است که ابتدا قدرت  Table Functions  ( توابعی که جدول برمی‌گردانند) را درک کنید، قبل از اینکه به سراغ پیچیدگی ‌های  CALCULATE  برروید.
اول از همه بگم که یک سایت هست به اسم https://chat.z.ai/  از خوبی هاش بگم وقتی سایت رو باز کردید دکمه ai slides رو انتخاب کنید و بهش درخواست بدید که براتون پاورپوینت درست کنه خیلی خوشگل و مجلسی براتون میسازه
مثلا کتاب دکس برای انسان ها رو بهش دادم گفتم توابع دکس رو خلاصه ازش استخراج کن و برام اسلاید کن به همین راحتی (البته خیلی زحمت میکشه زمان میبره). خلاصه این توابع به عنوان برگه تقلب در سایت آموزش قرار داده شد 

جلسه جدید:  توابع فصل یک
FILTER(<table>, <filter_expression>)
 بریم سراغ DimDate  که می شناسیم
یک مژر جدید با فرمول زیر بسازید
Create Table With Measure = FILTER (
        'master DimDate',
        'master DimDate'[PersianCalendarYear] = 1395
    )
شرمنده خطا می گیرید:
The expression refers to multiple columns. Multiple columns cannot be converted to a scalar value.
**این عبارت به چندین ستون اشاره می‌کند. چندین ستون را نمی‌توان به یک مقدار تکی (اسکالر) تبدیل کرد**
· Measure  باید فقط (یک مقدار اسکالر عدد، متن، TRUE/FALSE) برگرداند
· FILTER   همیشه یک Table برمی‌گرداند
به همین دلیل خطای بالا نمایش داده می‌شود.
کلمه Measure  در Power BI و DAX به معنی  معیار یا شاخص محاسباتی است
اما از نظر مفهومی:
Measure یعنی چه؟
Measure یک محاسبه پویا است که فقط یک مقدار واحد برمی‌گرداند.
یعنی:
· نتیجه‌اش یک عدد، یک متن، یا TRUE/FALSE است
· هیچ‌وقت جدول یا چند ستون برنمی‌گرداند
· مقدارش بسته به فیلترها (اسلایسر، ردیف جدول، نمودار و …) تغییر می‌کند.
راه‌حل‌ها (بسته به هدف شما)
۱- ساخت Calculated Table
از تب Modeling گزینه New Table
البته اینجا عملاً دست‌مان بسته است، چون داشبوردهای ما فعلاً به SSAS وصل هستند 😁
پس این گزینه فعلاً از روی میز کنار می‌رود.
۲- اصلاً چرا جدول می‌سازی؟
از خودت بپرس:
· واقعاً می‌خواهی یک ویژوال جدول یا ماتریس ببینی؟
· خب اگر قرار است جدول ببینی، چرا از اول این داده را داخل مدل SSAS نیاوردی؟
· یا نه، می‌خواهی از ویژوال‌های دیگر استفاده کنی؟
در هر دو حالت، آخرش داخل ویژوال داری Column می‌گذاری،
و Column یعنی عدد،
و عدد یعنی Measure باید یک مقدار اسکالر برگرداند.
پس راه درست این است:
اول داخل Measure داده را FILTER کن،
بعد نتیجه را با یک تابع مثل COUNTROWS / SUM / MIN / MAX
به یک عدد تبدیل کن.
به زبان خیلی خودمونی:
Measure جای جدول نیست؛ جای عدد است
مثلا
Min Date 1395 = MINX (
    FILTER (
        'master DimDate',
        'master DimDate'[PersianCalendarYear] = 1395
    ),'master DimDate'[PersianFullDateAlternateKey]
)
VAR  مخفف variable
کاربردش این است که نتیجه یک محاسبه را یک‌بار حساب کند، اسم بدهد، و چندبار استفاده کند.
کاربردها:
1- خوانا تر شدن کد
2- جلوگیری از محاسبه تکراری
3- دیباگ و فهم راحت تر
4- کنترل بهتر روی Context
چند نکته خیلی مهم
· VAR فقط داخل همان Measure معتبر است
· بیرون Measure در دسترس نیست
· می‌تواند عدد، متن، جدول، یا حتی نتیجه یک Measure دیگر باشد
Days 1395 =
VAR Year1395 =
    FILTER )
'master DimDate',
 'master DimDate'[PersianCalendarYear] = 1395
(
RETURN
    COUNTROWS ( Year1395 )
توابع فصل دو
تابع ALL
Syntax
ALL(<table or column>)
این تابع نسخه "بدون فیلتر" یک جدول را به شما برمی‌گرداند. انگار که یک کپی از جدول DimDate دارید که هیچ اسلایسر یا فیلتری روی آن اثر ندارد.
رفتار
· تمام فیلترها را از جدول یا ستون مشخص‌شده کاملاً حذف می‌کند
· اسلایسر، فیلتر ویژوال، فیلتر سطر/ستون، همه نادیده گرفته می‌شوند
Total Days =
COUNTROWS(
    ALL('master DimDate')
)

تابع ALLSELECTED
این تابع جدولی را برمی‌گرداند که فیلترهای "داخلی" (مثل ردیف‌های یک جدول) را نادیده می‌گیرد، اما به فیلترهای "بیرونی" (مثل اسلایسر بالای صفحه) احترام می‌گذارد.
مثال 
فرض کنید می‌خواهید مجموع کل روزهایی که کاربر در اسلایسر "انتخاب" کرده است را در هر ردیف نمایش دهید.
Selected Period Days = 
SUMX(
    ALLSELECTED('master DimDate'),
    1
)


· توضیح: در اینجا SUMX روی جدولی که ALLSELECTED ساخته است حرکت می‌کند و برای هر سطر عدد ۱ را جمع می‌زند.
· نتیجه: اگر کاربر در اسلایسر ۲ سال را انتخاب کرده باشد، این فرمول در تمام ردیف‌ها عدد ۷۳۰ را نشان می‌دهد.
تفاوت در یک مثال ملموس با ستون‌های شما
الان یک اسلایسر فصل  و ماه بگذارید و یک کارت که در آن مژر های زیر رو تعریف کنید و بعد نتیجه رو تحلیل کنید
AllTable = 
VAR x = ALL('master DimDate'[PersianMonthName])
RETURN COUNTROWS(x)
همیشه عدد ۱۲ را نشان می‌دهد (چون ۱۲ ماه داریم)، حتی اگر در اسلایسر فقط فصل "بهار" را انتخاب کرده باشید.
حالا این مژر رو تعریف کنید و نتیجه رو تحلیل کنید
SelectedTable = 
VAR x = ALLSELECTED('master DimDate'[PersianMonthName])
RETURN COUNTROWS(x)
یک بار فصل بهار رو انتخاب کنید. بار دیگر با نگه داشتن کلید ctrl ماه های فروردین و اردیبهشت و خرداد را انتخاب کنید.
ALLSELECTED(Column) فقط به فیلترهایی واکنش می‌دهد که مستقیماً روی همان ستون اعمال شده باشند،
نه به فیلترهایی که از ستون دیگر «منطقی» به نظر می‌رسند.

می تونید الان ناسزا بگید.
📌 نکته کلیدی:
جمله‌ای که باید در ذهنت قفل شود
ALL(Column) = distinct values table
ALL(Table) = full table without filters
این رفتار قانون زبان DAX است.
📌 نکته کلیدی:
· ALLSELECTED(Column) همیشه DISTINCT است
· اما DISTINCT در محدوده انتخاب کاربر

خلاصه به زبان ساده:
· ALL: کلاً فیلتر را "پاک‌کن" می‌زند. انگار هیچ فیلتری وجود ندارد.
· ALLSELECTED: فقط فیلترهای "داخل ویژوال" را پاک می‌کند تا بتوانید مجموع آنچه "بیرون" انتخاب شده را ببینید.
هر دو تابع در واقع دارند یک Table تولید می‌کنند که شما می‌توانید آن را به توابعی مثل SUMX یا COUNTROWS بدهید.

SUMMARIZE
Syntax
SUMMARIZE (
    Table,
    GroupBy_Column1,
    GroupBy_Column2,
    "NewColumnName", Expression
)
SUMMARIZE برای ساختن یک جدول خلاصه‌شده (Grouped Table) استفاده می‌شود.
مثال: در  dax query view نتیجه رو ببینید
تعداد روز در هر سال (کاربردی)
EVALUATE     
SUMMARIZE (
    'master DimDate',
    'master DimDate'[PersianCalendarYear],
    "DayCount", COUNTROWS ( 'master DimDate' )
)
این تابع عالیه برای ساخت جدول‌های موقت داخل محاسبات پیچیده‌تر، مثل وقتی می‌خوای درصد یا رتبه‌بندی حساب کنی
روش را در یک سناریوی کاربردی (تحلیل فصلی و ماهانه) پیاده‌سازی می‌کنیم.
فرض کن می‌خواهیم بدانیم در هر سال و فصل و هر ماه، چند روز ثبت شده و آخرین تاریخ (Maximum) آن چه زمانی بوده است.

۱. استفاده از SUMMARIZE
این تابع برای گروه‌بندی‌های سریع و ساده عالی است.
EVALUATE     
SUMMARIZE(
    'master DimDate',
    'master DimDate'[PersianCalendarYear],
    'master DimDate'[PersianSeasonName],      -- گروه‌بندی بر اساس نام فصل
    'master DimDate'[PersianMonthName],       -- گروه‌بندی بر اساس نام ماه
    "تعداد روزها", COUNTROWS('master DimDate'),
    "آخرین تاریخ شمسی", MAX('master DimDate'[PersianFullDateAlternateKey])
)
order by 'master DimDate'[PersianCalendarYear],'master DimDate'[PersianSeasonName],'master DimDate'[PersianMonthName]
۲. استفاده از GROUPBY  --- حرفه‌ای و امن
 در GROUPBY حتماً باید از یک تابع X مثل SUMX یا MAXX  و تابع جادویی CURRENTGROUP() استفاده کنیم. این روش زمانی که محاسبات پیچیده داخلی داریم، عملکرد دقیق‌تری دارد.
EVALUATE     
GROUPBY(
    'master DimDate',
    'master DimDate'[PersianCalendarYear],
    'master DimDate'[PersianSeasonName],      -- گروه‌بندی بر اساس نام فصل
    'master DimDate'[PersianMonthName],       -- گروه‌بندی بر اساس نام ماه
    "تعداد روزها", COUNTx(CURRENTGROUP(), 1),
    "آخرین تاریخ شمسی", MAXX(CURRENTGROUP(), 'master DimDate'[PersianFullDateAlternateKey])
)
· نکته ELI5: در اینجا CURRENTGROUP() یعنی: «فقط به ردیف‌های همین فصلی که الان توش هستی نگاه کن.»


۳. استفاده از SUMMARIZECOLUMNS  مدرن و سریع 
این تابع در حال حاضر استاندارد طلایی DAX برای ساخت جدول‌های خلاصه است به خصوص در Measureها . این تابع فیلترهای خارجی را بهتر درک می‌کند و ردیف‌های کاملاً خالی را به صورت خودکار حذف می‌کند.
EVALUATE     
SUMMARIZECOLUMNS( 
    'master DimDate'[PersianCalendarYear],
    'master DimDate'[PersianSeasonName],      -- گروه‌بندی بر اساس نام فصل
    'master DimDate'[PersianMonthName],       -- گروه‌بندی بر اساس نام ماه
    "تعداد روزها", COUNTROWS('master DimDate'),
    "آخرین تاریخ شمسی", MAX('master DimDate'[PersianFullDateAlternateKey])
)
ORDER BY 'master DimDate'[PersianCalendarYear],'master DimDate'[PersianSeasonName],'master DimDate'[PersianMonthName]

تفاوت‌های کلیدی برای حرفه‌ای‌تر شدن:
· تفاوت SUMMARIZE و SUMMARIZECOLUMNS:
تابع SUMMARIZE در ورودی اول نام جدول را می‌گیرد، اما SUMMARIZECOLUMNS نیازی به نام جدول در ابتدا ندارد (مستقیماً با ستون‌ها شروع می‌شود) و بسیار بهینه‌تر است.
· چه زمانی از GROUPBY استفاده کنیم؟
زمانی که می‌خواهید روی یک "جدولِ مجازی" که قبلاً با متغیر (VAR) ساخته‌اید دوباره گروه‌بندی انجام دهید، GROUPBY بهترین گزینه است.
· قانون طلایی: برای اکثر گزارش‌های معمولی در Power BI، اولویت اول شما استفاده از SUMMARIZECOLUMNS باشد چون سرعت بالاتری دارد.
یک مثال ترکیبی با VAR  
بیایید بیشترین تعداد روز در ماه‌های یک فصل را پیدا کنیم:
MaxDaysInSeason = 
VAR MonthlySummary = 
 SUMMARIZECOLUMNS( 
    'master DimDate'[PersianCalendarYear],
    'master DimDate'[PersianSeasonName],      -- گروه‌بندی بر اساس نام فصل
    'master DimDate'[PersianMonthName],       -- گروه‌بندی بر اساس نام ماه
    "DaysInMonth", COUNTROWS('master DimDate')
)
RETURN
    MAXX(MonthlySummary, [DaysInMonth])

این کد ابتدا یک جدول خلاصه در حافظه می‌سازد (مثلاً فروردین ۳۱، اردیبهشت ۳۱، خرداد ۳۱) و بعد با MAXX بزرگترین عدد را (۳۱) برمی‌گرداند. 

چرا سه تابع مختلف؟
وجود سه تابع  SUMMARIZE، GROUPBY و SUMMARIZECOLUMNS  که عملکردی مشابه دارند، ممکن است عجیب به نظر برسد. این موضوع دلایل تاریخی و فنی دارد. چون DAX اول زبان Query نبود، بعداً مجبور شد Query شود.، اما مهم‌تر از آن نشان می‌دهد که گروه‌بندی ردیف‌ها یکی از مفاهیم بسیار کلیدی در DAX است. 
تولد DAX  اصلاً قرار نبود Query Language باشد
DAX در ابتدا (Excel Power Pivot) ساخته شد برای:
· نوشتن Measure
· محاسبه روی مدل ستاره‌ای
· نه ساخت جدول‌های تحلیلی پیچیده
خلاصه اش کنم تاریخچه اش  رو: 90 درصد کوئری ها رو SUMMARIZECOLUMNS   جوابگو هست 10 درصد بقیه هم با GROUPBY. بقیه دلایل تاریخی اش به ما چه.
چرا قدیمی‌ها حذف نشدند؟
سؤال منطقی:
«خب چرا SUMMARIZE و GROUPBY را حذف نکردند؟»
پاسخ واقعی:
· Backward Compatibility
· میلیون‌ها فایل Excel و Power BI قدیمی
· شکستن آن‌ها غیرقابل قبول بود
پس:
· قدیمی‌ها ماندند
· جدید توصیه شد
· ولی حذف نشد

تابع IF 
IF(
    <logical_test>,
    <value_if_true>,
    <value_if_false>
)
مثال
Is Spring = 
IF(
    'master DimDate'[PersianCalendarSeason]  = 1,
    "Spring",
    "Not Spring"
)

اگه خوشحال شدید که از قبل if  رو بلدید و اگه این دکس بالا رو به عنوان مژر تعریف کردید خیلی شیک خطا می گیرید و ناراحت میشید. چرا؟
این عبارت یک ستون کامل را با یک مقدار مقایسه می‌کند و در کانتکست جدول معمولاً باعث خطا می‌شود، مگر اینکه در یک ستون محاسبه‌شده (Calculated Column) استفاده شود. اگر این فرمول را در Measure قرار دهید، خطا می‌دهد، زیرا Measure نمی‌تواند مستقیم ستون را با عدد مقایسه کند . باید در تابعی مثل SELECTEDVALUE یا MAX استفاده شود.

Is Spring = 
IF(
    SELECTEDVALUE('master DimDate'[PersianCalendarSeason] ) = 1,
    "Spring",
    "Not Spring"
)

تابع SELECTEDVALUE
SELECTEDVALUE(<column>, [alternateResult])
· column: ستونی که می‌خواهیم مقدارش را بخوانیم.
· alternateResult (اختیاری): اگر بیش از یک مقدار وجود داشت، چه متنی نشان داده شود.


این تابع بررسی می‌کند که آیا در ستون مورد نظر، فقط و فقط یک مقدار باقی مانده است یا خیر.
· اگر یک مقدار انتخاب شده باشد (یا بر اثر فیلتر فقط یک سطر مانده باشد)، آن مقدار را برمی‌گرداند.
· اگر بیش از یک مقدار وجود داشته باشد (مثلاً کاربر چیزی انتخاب نکرده باشد یا چند مورد را تیک زده باشد)، مقدار Blank (یا مقداری که شما تعیین می‌کنید) را برمی‌گرداند.
SWITCH
تابع SWITCH مانند یک «مرکز دسته‌بندی» یا «کلید انتخاب» عمل می‌کند. این تابع به جای اینکه چندین IF تو در تو بنویسید (که خواندنش سخت است)، اجازه می‌دهد مقادیر را خیلی تمیز با هم مقایسه کنید.
SWITCH(<expression>, <value1>, <result1>, <value2>, <result2>, ..., <else>)
مثال:
SeasonNameText = 
VAR __SeasonNumber = SELECTEDVALUE('master DimDate'[PersianCalendarSeason])
RETURN
SWITCH(
    __SeasonNumber,
    1, "بهار",
    2, "تابستان",
    3, "پاییز",
    4, "زمستان",
    "نامشخص"
)

HASONEVALUE 
 تابع HASONEVALUE یک تابعِ «نگهبان» است. این تابع به شما می‌گوید که آیا در ستون مورد نظر، دقیقاً یک مقدار منحصربه‌فرد وجود دارد یا خیر.
خروجی این تابع برخلاف توابع قبلی، عدد یا متن نیست؛ بلکه فقط دو حالت دارد: TRUE (درست) یا FALSE (غلط).
ساختار
HASONEVALUE(<columnName>)

تفاوت ظریف با SELECTEDVALUE
شاید بپرسی: «این که همان SELECTEDVALUE است!»
اما یک تفاوت مهم دارند:
· SELECTEDVALUE: آن مقدارِ واحد را استخراج می‌کند و به شما می‌دهد (مثلاً عدد "۱۴۰۲").
· HASONEVALUE: فقط چک می‌کند که آیا یک مقدار هست یا نه (جواب بله/خیر می‌دهد).

مثال با DimDate
فرض کن می‌خواهی محاسباتی انجام دهی که فقط وقتی معنی دارد که «یک سال خاص» انتخاب شده باشد. اگر کاربر کل سال‌ها را انتخاب کرده باشد، می‌خواهی محاسبات انجام نشود تا اشتباه پیش نیاید.
IsOnlyOneYear = 
VAR __Check = HASONEVALUE('master DimDate'[PersianCalendarYear])
RETURN
IF(__Check, "یک سال انتخاب شده", "لطفاً فقط یک سال را انتخاب کنید")

ترکیب با SWITCH (الگوی طلایی)
می‌توانی از این تابع استفاده کنی تا بفهمی کاربر در چه سطحی از تاریخ است (سال یا ماه؟) و بر اساس آن محاسبات را تغییر دهی:
ContextLevel = 
SWITCH(
    TRUE(),
    HASONEVALUE('master DimDate'[PersianMonthName]), "شما در حال مشاهده سطح ماه هستید",
    HASONEVALUE('master DimDate'[PersianCalendarYear]), "شما در حال مشاهده سطح سال هستید",
    "شما در سطح کل تاریخ هستید"
)

خلاصه:
1. HASONEVALUE: یعنی «آیا فقط یک مقدار در این ستون فیلتر شده؟»
2. اگر کاربر یک مورد را در اسلایسر تیک بزند، مقدار آن TRUE می‌شود. اگر تیک را بردارد (همه انتخاب شوند)، FALSE می‌شود.

CONCATENATEX 
تابع CONCATENATEX عضوی از خانواده توابع Iterator (تکرارکننده) است (مثل SUMX یا MAXX).
کار این تابع این است: سطر به سطرِ یک جدول را می‌خواند، یک عبارت (متن) را برای هر سطر محاسبه می‌کند و در نهایت تمام آن متن‌ها را با یک «جداکننده» (مثل ویرگول) پشت سر هم می‌چسباند.
ساختار (Syntax)
CONCATENATEX(<table>, <expression>, [delimiter], [orderBy_expression], [order])
1. table: جدولی که می‌خواهیم روی سطرهایش حرکت کنیم.
2. expression: چه چیزی از هر سطر برداشته شود؟ (مثلاً نام ماه).
3. delimiter: متن‌ها با چه علامتی از هم جدا شوند؟ (مثلاً " - " یا "، ").
4. orderBy_expression (اختیاری): بر چه اساسی مرتب شوند؟
5. order (اختیاری): صعودی یا نزولی؟

مثال ۱: لیست کردن ماه‌های انتخاب شده
فرض کن کاربر در اسلایسر چند ماه را انتخاب کرده و تو می‌خواهی در یک کارت بنویسی: «ماه‌های انتخاب شده: فروردین، اردیبهشت».
SelectedMonthsList = 
VAR __SelectedTable = ALLSELECTED('master DimDate'[PersianMonthName]) 
RETURN
CONCATENATEX(
    __SelectedTable, 
    'master DimDate'[PersianMonthName], 
    " - "
)

اگر کاربر فروردین، تیر و آذر را انتخاب کرده باشد، خروجی می‌شود: فروردین - تیر - آذر

تفاوت CONCATENATE با CONCATENATEX
· CONCATENATE: فقط دو تا متن ساده را به هم می‌چسباند (مثل چسب دوقلو).
· CONCATENATEX: روی یک جدول می‌چرخد و مقادیر چندین سطر را به هم می‌چسباند (مثل تسبیح که دانه‌ها را به نخ می‌کشد).

ترکیب با توابع قبلی (یک مثال حرفه‌ای)
بیا با HASONEVALUE ترکیبش کنیم. اگر یک ماه انتخاب شده بود، همان را نشان بده، اگر بیشتر بود لیستشان کن:
DynamicTitle = 
IF(
    HASONEVALUE('master DimDate'[PersianMonthName]),
    "گزارش ماه: " & SELECTEDVALUE('master DimDate'[PersianMonthName]),
    "گزارش ماه‌های: " & CONCATENATEX(VALUES('master DimDate'[PersianMonthName]), 'master DimDate'[PersianMonthName], " و ")
)


تابع ISINSCOPE
 این تابع ابزاری است برای اینکه بفهمیم «الان در کدام سطح از سلسله‌مراتب (Hierarchy) هستیم؟»
این تابع زمانی کاربرد دارد که شما از فیلدهای تاریخ (مثل سال، فصل، ماه) در سطرهای یک ماتریس یا نمودار استفاده می‌کنید و می‌خواهید محاسبات در هر سطح متفاوت باشد.
ساختار
ISINSCOPE(<columnName>)
خروجی این تابع TRUE یا FALSE است.

تفاوت مهم با HASONEVALUE
بسیاری از کاربران این دو را اشتباه می‌گیرند:
· HASONEVALUE: چک می‌کند که آیا کلاً یک مقدار در فیلتر باقی مانده یا نه (تحت تأثیر اسلایسر هم هست).
· ISINSCOPE: چک می‌کند که آیا این ستون عامل اصلیِ ایجاد آن سطر در گزارش هست یا نه (مخصوص تحلیل سلسله‌مراتب در ماتریس).

مثال با DimDate (در یک ماتریس)
فرض کن ماتریسی داری که در سطرهای آن ابتدا PersianCalendarYear (سال) و زیر آن PersianMonthName (ماه) قرار دارد.
می‌خواهیم فرمولی بنویسیم که:
1. اگر در سطح ماه بودیم، مجموع فروش ماه را نشان دهد.
2. اگر در سطح سال بودیم، بنویسد "مجموع سال".
ScopeTest = 
SWITCH(
    TRUE(),
    ISINSCOPE('master DimDate'[PersianMonthName]), SUM(Sales[Amount]),
    ISINSCOPE('master DimDate'[PersianCalendarYear]), "مجموع سال",
   0
)
شرط‌ها را از ریزترین سطح به درشت‌ترین سطح بنویس

کاربرد طلایی: محاسبه درصد از والد (Percent of Parent)
یکی از سخت‌ترین کارها در دکس، محاسبه سهم یک ماه از «همان سال» است (نه از کل تاریخ). با ISINSCOPE و ALLSELECTED این کار ساده می‌شود:
PercentOfParent = 
VAR __CurrentSales = SUM(Sales[Amount])
RETURN
SWITCH(
    TRUE(),
    -- اگر در سطح ماه هستیم، باید تقسیم بر کل فروش "آن سال" کنیم
    ISINSCOPE('master DimDate'[PersianMonthName]), 
        VAR __YearSalesTable = ALLSELECTED('master DimDate'[PersianMonthName])
        VAR __YearSales = SUMX(__YearSalesTable, SUM(Sales[Amount]))
        RETURN __CurrentSales / __YearSales,
    
    -- اگر در سطح سال هستیم، سهم سال از کل را نشان بده
    ISINSCOPE('master DimDate'[PersianCalendarYear]),
        VAR __AllSalesTable = ALLSELECTED('master DimDate')
        VAR __AllSales = SUMX(__AllSalesTable, SUM(Sales[Amount]))
        RETURN __CurrentSales / __AllSales,
        
    BLANK()
)

چرا در 2025 از ISINSCOPE استفاده می‌کنیم؟
در گزارش‌های مدرن که کاربران زیاد از قابلیت Drill-down (ریزه شدن در داده‌ها) استفاده می‌کنند، این تابع به شما اجازه می‌دهد:
1. ظاهر گزارش را تمیز کنید: (مثلاً در ردیف‌های جمع کل، اعداد بی‌معنی را نمایش ندهید).
2. محاسبات داینامیک: فرمول در سطح «فصل» یک رفتار داشته باشد و در سطح «روز» رفتاری دیگر.
خلاصه برای یادآوری:
· فکر کن ISINSCOPE مثل یک GPS عمل می‌کند که به کدِ تو می‌گوید: «الان دقیقاً توی کدوم طبقه (سال، فصل یا ماه) ایستادی؟»

تابع CONTAINSROW ابزاری است برای «چک کردن وجودِ مقادیر». این تابع بررسی می‌کند که آیا یک سطرِ خاص (یا مجموعه‌ای از مقادیر) در یک جدول وجود دارد یا خیر.
در واقع، این تابع نسخه بهینه و تمیزِ عملگر IN است.
ساختار (Syntax)
dax
CONTAINSROW(<table>, <value1>, <value2>, ...)
· table: جدولی که می‌خواهیم در آن جستجو کنیم.
· values: مقادیری که دنبالشان می‌گردیم (باید به همان تعداد و ترتیب ستون‌های جدول باشند).
· خروجی: یک مقدار منطقی (TRUE یا FALSE).

مثال ۱: چک کردن انتخاب‌های کاربر (با DimDate)
فرض کن می‌خواهی چک کنی که آیا ماه «فروردین» جزو ماه‌های انتخاب شده توسط کاربر هست یا نه، تا بر اساس آن یک پیام خاص نشان دهی.
IsFarvardinSelected = 
VAR __SelectedMonths = VALUES('master DimDate'[PersianMonthName]) -- جدولی از ماه‌های انتخاب شده
RETURN
CONTAINSROW(__SelectedMonths, "فروردین")


اگر فروردین در لیست انتخاب‌های کاربر باشد، خروجی TRUE می‌شود.

مثال ۲: استفاده در FILTER برای فیلتر کردن چندگانه
به جای اینکه بنویسی Month = "فروردین" || Month = "اردیبهشت" || Month = "خرداد"، می‌توانی از یک لیست (جدول درجا) و CONTAINSROW استفاده کنی.
در دکس، لیست‌ها را داخل { } می‌نویسیم که یک جدول تک‌ستونه می‌سازد.
SpringSales = 
VAR __SpringMonths = {"فروردین", "اردیبهشت", "خرداد"}
VAR __SpringTable = FILTER(
    Sales, 
    CONTAINSROW(__SpringMonths, RELATED(DimDate[PersianMonthName]))
)
RETURN
SUMX(__SpringTable, Sales[Amount])
(نکته: در اینجا فرض شده بین جدول فروش و تاریخ رابطه وجود دارد).

تفاوت CONTAINSROW با عملگر IN
در واقع این دو معادل هم هستند:
1. PersianMonthName IN {"فروردین", "تیر"}
2. CONTAINSROW({"فروردین", "تیر"}, PersianMonthName)
اما طبق فلسفه DAX for Humans، استفاده از CONTAINSROW خوانایی کد را بالا می‌برد چون دقیقاً مشخص است که دارید عملیات جستجو را روی یک Row (سطر) انجام می‌دهید.

مثال ۳: جستجوی ترکیبی (چند ستونه)
این تابع زمانی قدرتمندتر می‌شود که بخواهی ترکیب دو ستون را چک کنی. مثلاً چک کردن یک سال و یک ماه خاص:
dax
IsSpecificDateSelected = 
VAR __SelectedData = VALUES(DimDate) 
RETURN
CONTAINSROW(
    SELECTCOLUMNS(__SelectedData, "Year", DimDate[PersianCalendarYear], "Month", DimDate[PersianMonthName]),
    1403, 
    "فروردین"
)
این فرمول چک می‌کند که آیا در جدولِ فیلتر شده توسط کاربر، سطری وجود دارد که سالش ۱۴۰۳ و ماهش فروردین باشد؟
خلاصه برای ذهن شما:
· ورودی اول: یک جدول (یا لیستی داخل { }).
· ورودی‌های بعدی: مقادیری که می‌خواهیم پیدا کنیم.
· خروجی: فقط TRUE یا FALSE.
· کاربرد اصلی: ساده‌سازی شرط‌های پیچیده و چک کردن انتخاب‌های کاربر در اسلایسر.
نکته برای سال ۲۰۲۵: در نسخه‌های جدید Power BI، استفاده از این تابع برای مدیریت فیلترهای پویا در محاسبات سنگین، از نظر پرفورمنس بسیار توصیه می‌شود.
مطابق با متدولوژی DAX for Humans، تابع EXCEPT یکی از توابع «جدولی» (Table Functions) است که برای مقایسه دو جدول و پیدا کردن تفاوت‌های آن‌ها به کار می‌رود.
به زبان ساده: EXCEPT تمام سطرهایی را که در «جدول اول» هست ولی در «جدول دوم» نیست، برمی‌گرداند. (عملیات تفریق دو مجموعه).
ساختار (Syntax)
dax
EXCEPT(<left_table>, <right_table>)
· left_table: جدول پایه (هر چه اینجا باشد و در جدول دوم نباشد، استخراج می‌شود).
· right_table: جدولی که می‌خواهیم مقادیرش را از جدول اول حذف کنیم.

نکته بسیار مهم (قانون طلایی)
برای اینکه این تابع کار کند، هر دو جدول باید تعداد ستون‌های برابر و ترتیب دیتاتایپ‌های یکسان داشته باشند.

مثال ۱: پیدا کردن ماه‌هایی که فروش نداشته‌اند
فرض کن می‌خواهی لیست ماه‌هایی از سال ۱۴۰۳ را پیدا کنی که هیچ فروشی در آن‌ها ثبت نشده است.
dax
MonthsWithNoSales = 
VAR __AllMonths = VALUES(DimDate[PersianMonthName]) -- لیست تمام ۱۲ ماه
VAR __MonthsWithSales = VALUES(Sales[MonthName]) -- لیست ماه‌هایی که در جدول فروش هستند
RETURN
EXCEPT(__AllMonths, __MonthsWithSales)
خروجی این تابع یک جدول است که فقط نام ماه‌های بدون فروش را در خود دارد.

مثال ۲: ترکیب با CONCATENATEX برای گزارش‌دهی
می‌توانیم از مثالی که یاد گرفتی استفاده کنی تا یک پیغام پویا بسازی:
dax
MissingMonthsAlert = 
VAR __AllMonths = VALUES(DimDate[PersianMonthName])
VAR __MonthsWithSales = VALUES(Sales[MonthName])
VAR __MissingTable = EXCEPT(__AllMonths, __MonthsWithSales)
RETURN
"ماه‌های بدون فروش: " & CONCATENATEX(__MissingTable, [PersianMonthName], "، ")

مثال ۳: مقایسه دو سال (مثلاً ۱۴۰۲ نسبت به ۱۴۰۳)
فرض کن می‌خواهی ببینی کدام شعبه‌ها (BranchId) در سال ۱۴۰۲ فعال بوده‌اند ولی در سال ۱۴۰۳ هیچ فعالیتی نداشته‌اند.
dax
InactiveBranches = 
VAR __Branches1402 = CALCULATETABLE(VALUES(DimDate[BranchId]), DimDate[PersianCalendarYear] = 1402)
VAR __Branches1403 = CALCULATETABLE(VALUES(DimDate[BranchId]), DimDate[PersianCalendarYear] = 1403)
RETURN
EXCEPT(__Branches1402, __Branches1403)
(نکته: چون هنوز CALCULATETABLE را به صورت رسمی در متدولوژی خودمان نگفتیم، فرض کن دو لیست از شعبه‌ها داری).

کاربرد در عیب‌یابی (Debugging)
یکی از بهترین کاربردهای EXCEPT در سال ۲۰۲۵ برای دکس‌نویس‌ها، پیدا کردن دیتاهای ناقص است. مثلاً:
· پیدا کردن مشتریانی که ثبت‌نام کرده‌اند اما خرید نکرده‌اند.
· پیدا کردن کالاهایی که در انبار هستند ولی در لیست فروش نیستند.
خلاصه برای ذهن شما:
· EXCEPT یعنی: «این‌ها رو داشته باش، ولی اون‌هایی که توی لیست دوم هست رو ازشون حذف کن».
· خروجی آن همیشه یک Table است.
· ترتیب نوشتن جدول‌ها مهم است (جدول اول منهای جدول دوم).
تمرین: فکر کن چطور می‌توانی با COUNTROWS و EXCEPT تعداد ماه‌هایی که هنوز در آن‌ها فروشی انجام نشده را بشماری؟
(پاسخ: COUNTROWS(EXCEPT(AllMonths, MonthsWithSales)))
مطابق با متدولوژی DAX for Humans، تابع UNION برای «چسباندن جدول‌ها روی هم» استفاده می‌شود. اگر EXCEPT عمل تفریق بود، UNION عمل جمع یا اجتماع است.
این تابع سطرهای دو یا چند جدول را برداشته و همه را در یک جدول واحد زیر هم قرار می‌دهد.
ساختار (Syntax)
dax
UNION(<table>, <table>, [<table>], ...)
· table: جدول‌هایی که می‌خواهید به هم متصل کنید.
· خروجی: یک جدول واحد شامل تمام سطرهای جدول‌های ورودی.

قوانین طلایی UNION
۱. تعداد ستون‌ها: تمام جدول‌ها باید تعداد ستون‌های برابری داشته باشند.
۲. ترتیب ستون‌ها: ستون‌ها بر اساس موقعیت (Position) زیر هم قرار می‌گیرند، نه بر اساس نام. (یعنی ستون اولِ جدول اول زیر ستون اولِ جدول دوم می‌رود).
۳. تکرار: این تابع سطرهای تکراری را حذف نمی‌کند (برخلاف برخی دستورات SQL). اگر یک سطر در هر دو جدول باشد، در خروجی ۲ بار ظاهر می‌شود.

مثال ۱: ساخت یک لیست سفارشی (با DimDate)
فرض کن می‌خواهی یک لیست داشته باشی که شامل ماه‌های فصل بهار باشد و در انتهای آن یک سطر دستی به نام "سایر موارد" اضافه کنی.
dax
SpringAndOthers = 
VAR __SpringMonths = FILTER(VALUES(DimDate[PersianMonthName]), DimDate[PersianMonthName] IN {"فروردین", "اردیبهشت", "خرداد"})
VAR __ExtraRow = {"سایر موارد"}
RETURN
UNION(__SpringMonths, __ExtraRow)

مثال ۲: ترکیب داده‌های دو سال مختلف (در متغیرها)
فرض کن می‌خواهی جدولی بسازتی که فقط شامل روزهای خاصی از دو سال متفاوت باشد تا روی آن‌ها محاسبات انجام دهی.
dax
CombinedDates = 
VAR __Year1400 = FILTER(DimDate, DimDate[PersianCalendarYear] = 1400 && DimDate[PersianMonthNumberOfYear] = 1)
VAR __Year1401 = FILTER(DimDate, DimDate[PersianCalendarYear] = 1401 && DimDate[PersianMonthNumberOfYear] = 1)
RETURN
UNION(__Year1400, __Year1401)

مثال ۳: استفاده در محاسبات با SUMX
بیا از توابعی که یاد گرفتی استفاده کنیم. فرض کن می‌خواهی جمع فروش را برای دو دسته خاص که از دو جدول مختلف می‌آیند حساب کنی:
dax
TotalSpecificSales = 
VAR __TableA = FILTER(Sales, Sales[Type] = "Online")
VAR __TableB = FILTER(Sales, Sales[Type] = "In-Store")
VAR __CombinedTable = UNION(__TableA, __TableB)
RETURN
SUMX(__CombinedTable, Sales[Amount])

تفاوت UNION با سایر توابع
· EXCEPT: سطرها را کم می‌کند.
· UNION: سطرها را زیاد می‌کند (روی هم می‌چیند).
· CROSSJOIN: جدول‌ها را در هم ضرب می‌کند (ترکیب همه سطرها با هم).
نکته کاربردی برای سال 2025:
در مدل‌سازی مدرن، از UNION زیاد برای ساخت «جدول‌های مجازی» (Virtual Tables) استفاده می‌شود. مثلاً وقتی می‌خواهید داده‌های بودجه (Budget) و فروش واقعی (Actual) را که در دو جدول مجزا هستند، برای یک نمودار یکپارچه کنید، UNION بهترین ابزار است.
خلاصه برای ذهن شما:
· UNION یعنی: «جدول‌ها را مثل آجرهای یک دیوار روی هم بگذار».
· نام ستون‌ها در خروجی، همیشه از اولین جدول ارث‌بری می‌شود.
· اگر می‌خواهی تکراری‌ها حذف شوند، باید از تابع DISTINCT روی نتیجه‌ی UNION استفاده کنی.

image1.jpeg
Golrang System
GuaanSy15




image2.png
m

Power BI




