	[image: Golrang System | گلرنگ سیستم | LinkedIn]
	

Power BI
	
[image: ‪Power Bi Logo, Data, Branding, Business Intelligence, Insights PNG‬‏]

	Page: 8 of 8
	Rev:01
	Document Title: Power BI

مبانی هوش تجاری و مفاهیم پایه

	GNG SBU
	
	Date
	Rev

	Approved
	Checked
	Prepared
	Mojdeh Taghavi
	1404/09/18
	01

✨️پدربزرگ داشبوردهای امروزی در سال ۱۸۴۶ متولد شد.
داشبوردها در اصل یه صفحه ساده بودن که روی کالسکه‌های اسبی نصب می‌شدن. وظیفه‌شون؟ محافظت از سرنشین‌ها در برابر پرتاب گل، آب و خاشاکی که از سم اسب‌ها به هوا بلند می‌شد!
اما داستان اینجا تموم نشد. داشبوردها کم‌کم تکامل پیدا کردن و نقش‌شون فراتر از یه محافظ ساده شد. حالا دیگه داشبوردها نه فقط محافظ فیزیکی، بلکه محافظ واقعی راننده و مسافر بودن؛ با هشدارهای مهم درباره موتور، نمایش سرعت، جلوگیری از خرابی‌های ناگهانی و غیره.این یعنی داشبوردها از یه محافظ ساده به یه ابزار هوشمند برای هدایت و کنترل تبدیل شدن و در نهایت، چی بهتر از این که همه این تغییرات نشان دهنده تمرکز واقعی روی نیازهای کاربر و محافظت از اون باشه؟[image: No alternative text description for this image]
تعریف هوش تجاری:
Business intelligence (BI) is a Technology-driven process for analyzing historical peformance data and presenting actionable information to help executives, managers and other corporate end users make more informed business decisions.

· Technology-Driven process: هوش تجاری یک فرآیند فناوری محور است به این معنی که این فرایند بدون فناوری کامپیوتری قابل انجام نیست یعنی با اکسل و چرتکه و کاغذ و ماشین حساب و ... نمی توانید BI داشته باشید. چون حجم پردازش سنگین است بنابراین باید از تکنولوژی های IT استفاده کنیم.
هدف هوش تجاری چیست؟
· analyzing historical peformance data : برای تحلیل داده ها....

بحث historical در BI خیلی مهم است یعنی باید سوابق دیتا داشته باشیم. باید حداقل n سال، دیتا داشته باشیم. مثلا سازمانی که دو سال است شروع به کار کرده و دیتا دارد در BI زیاد نمی تواند حرف بزند چون نمی توانیم روندها را بررسی کنیم. چون سال اول، سال شروع به کار است و Business نمی تواند خوب باشد و سال دوم هم هنوز Business شکل نگرفته است باید چند سال بگذرد و دیتا جمع شود تا بتوانیم یک کار BI واقعی با نتیجه خوب انجام دهیم.
· چه دیتایی باید جمع شود؟ peformance data. یعنی دیتایی که عملکرد سازمان را نشان می دهد. ما در BI به داده هایی نیاز داریم که عملکرد سازمان را نشان می دهد. ما به دنبال تراکنش ها هستیم تا بتوانیم تحلیل انجام بدهیم. بنابراین در بحث BI نه تنها به دنبال اطلاعات پایه مشتری، گروه مشتری، کالا، گروه کالا (بعدا می بینیم که به اینها dimension می گوییم) بلکه به تراکنش های سازمان نیز نیاز داریم چون می خواهیم تراکنش ها را تحلیل کنیم.
به دنبال چی هستیم؟
· presenting actionable information: می خواهیم داده را تبدیل کنیم به اطلاعات. اما نه هر اطلاعاتی بلکه اطلاعات تحلیلی. این اطلاعات باید actionable باشند یعنی بتوان بر اساس آن تصمیم گرفت و اقدام کرد. اطلاعاتی که به ما بگوید که کاری که می خواهیم انجام بدهیم درست است یا غلط. آیا این فرایندی که در سازمان ما انجام می شود اثر آن مثبت است یا منفی. مثلا تبلیغاتی که انجام می دهیم تغییری در درخواست و تقاضای مشتری داشته است یا خیر.
به چه کسانی؟
· help executives, managers and other corporate end users: مشتریان BI معمولا مدیران شرکت های بزرگ، مدیران اجرایی و سازمان های تجاری و ... می باشند.
برای چی؟
· make more informed business decisions: برای اینکه مدیران حسی تصمیم نگیرند. ما می خواهیم آنها بر اساس دانش و آگاهی تصمیم بگیرند. براساس اطلاعاتی که به آنان ارائه می شود اگاهانه تصمیم بگیرند.

تعریف دیگر برای هوش تجاری:
مجموعه روش ها و ابزارهایی که باعث می شوند اطلاعات گذشته سازمان (تجارب موجود) تبدیل به هوشمندی برای اتخاذ تصمیمات مدیریتی گردد.

بعضی مواقع مرز بین سیستم های عملیاتی (به آنها OLTP می گویند) و سیستم های تحلیلی (به آنها OLAP می گویند) کم رنگ می شوند.
OLTP : online transaction processing
OLAP : online Analytical Processing
مثلا در BI گزارشاتی اضافه شده که بیشتر جنبه عملیاتی دارد و یا در سیستم های عملیاتی گزارشاتی هست که جنبه تحلیلی دارند. یعنی برای اینکه حتما به BI برسیم لازم نیست که SSAS مایکروسافت رو نصب کنیم و کلیک ویو داشته باشیم و یا DW داشته باشیم نه خیلی ها با همین سیستم های عملیاتی دارند گزارشات مدیریتی می دهند اما این گزارشات کند است. استفاده از سیستم های OLTP برای گزارشات تحلیلی کند است. مثلا سازمانی را در نظر بگیرید که صدها میلیون رکورد داشته باشد و دهها گیگ دیتا داشته باشد و بخواهد یک گزارش بگیرد در ده سال گذشته به یک تفکیکی چه عملکردی داشته است. این گزارش کند است. اما ما در BI به دنبال سرعت هستیم. در گزارشات OLAP خیلی سرعت مهم است. چون یک مدیر نه وقت و نه حوصله دارد که برای کندی گزارشات صبر کند اما در عین حال می خواهد گزارشات را آن طور که خودش می خواهد خودش از سیستم بگیرد. به همین ترتیب به علت سرعت بالای گزارشات OLAP گاهی می بینیم که گزارشات عملیاتی در این سیستم ها ساخته می شوند.

در BI چه مراحلی داریم؟ مراحل تبدیل اطلاعات عملیاتی به گزارشات تحلیلی چیست؟

[image:]

 ما در هر سازمان یک سری منابع اطلاعاتی داریم. منابع اطلاعاتی ما در بهترین شکل بانک های RDBMS سازمان هستند مثل SQL SERVER، اوراکل و ... ممکن است بخشی از اطلاعات ما در اکسل باشد و یا در بانک های غیر Relational نظیر FoxPro باشد. ممکن است بخشی از اطلاعات سازمان ما بیرون سازمانی باشد مثل اطلاعات بورس، اطلاعات نرخ ارز، وضعیت سهم بازار و ...
این منابع در جایی به نام Data Warehouse (DW) تجمیع می شوند.
· Data Warehouse چیست؟ یک بانک Relational است (مثلا یک بانک sql server) با این فرق که ما در DW اطلاعات را تجمیع می کنیم و فرمت های آن را به گونه ای عوض می کنیم که برای گزارش گیری ایده آل باشد. در بانک های RDBMS ما دنبال نرمالیزاسیون هستیم چون ما به دنبال سرعت اجرای تراکنش ها هستیم اما در انبار داده ما اصلا نرمالیزاسیون را رعایت نمی کنیم اتفاقا دنبال دی نرمالیزاسیون هستیم یعنی جداول را با هم Join می کنیم و به صورت flat در DW ذخیره می کنیم کلی هم افزونگی ایجاد می شود که اشکال هم ندارد.

· آیا واجب است همه پروژه های BI، انبار داده داشته باشد؟ خیر، برای پروژه های کوچک لزومی ندارد. ممکن است یک پروژه BI به منابع داده سازمان مثلا RDBMS وصل شود. البته این زمانی اتفاق می افتد که تنوع داده نداشته باشیم مثلا همه اطلاعات در بانک sql server باشد در این صورت نیازی به DW نیست و در این صورت حسن آن این است که گزارشات ما live هستند اما این live بودن مهم نیست چون ما هدف مان از BI گزارشات عملیاتی نیست که بخواهیم در لحظه به روز باشند.
· به عمل تجمیع اطلاعات در DW می گوییم ETL
ETL : Extract Transform Load
 Extract : استخراج کردن
 Transform: تغییر شکل دادن، تغییر فرمت دادن
 Load: بار گذاری
· پس اطلاعات را از سیستمهای اطلاعاتی استخراج کن و تغییر شکل بده و پردازش کن و بارگذاری کن در DW

· کدام ابزار در محصولات مایکروسافت ETL انجام می دهد؟ SSIS
SSIS: SQL Server Integration Services

· SSAS:
SSAS: SQL Server Analysis Services

این یک سرویس است و باید نصب شود. این یک بانک relational نیست اینجا جدول و relation نیست. یک فرمت خاص است و طراحی شده است که بتوانیم گزارشات سریع گرفت و دو مدل دارد:
1. Multidimensional
2. Tabular
· این دو مدل کاملا از هم منفک هستند و اگر بخواهید هر دو را داشته باشید باید دوبار SSAS را نصب کنید. مدل Tabular از ورژن 2012 به بعد اومده است. Multidimensional مدل سنتی BI است وقتی می گوییم مکعب یعنی داریم Multidimensional فکر می کنیم. Tabular شیوه جدید است و در این مدل چیزی به نام Dimension و مکعب نداریم و خیلی شبیه بانک Relational معمولی است. مایکروسافت سعی کرد BI را ساده کند. BI به سمتی می رود که به آن Self Service BI می گویند. یعنی یک کارشناس غیر IT می تواند خودش یک پروژه BI تعریف کند و گزارشات تحلیلی بگیرد.
مدل Multidimensionalدیگر توصیه نمی‌شود.
مایکروسافت رسماً اعلام کرده توسعه جدید برای MDX/MultiDim انجام نمی‌دهد.
· پس با وجود مدل Tabular چرا باید مدل Multidimensional را یاد بگیریم؟ چون هنوز زود است این مدل را کنار بگذاریم. بسیاری از شرکت ها یک پروژه Multidimensional دارند و چند سال است که با آن کار می کنند. هنوز 80 درصد شرکت ها Multidimensional هستند. ضمن اینکه Tabular می خواهد دیتا را در RAM بارگذاری کند پس یک محدودیت آن RAM است اما در مدل Multidimensional محدودیتی در حجم دیتا نداریم. همچنین مدل Tabluar به CPU پر سرعت هم نیاز دارد.

· PowerBI یک موتور Tabular در خودش دارد پس نیازی نیست که حتما SSAS نصب شود اما PowerBI می تواند به SSAS هم وصل شود و در نتیجه سرعت بالاتری داشته باشیم

· به عمل انتقال دیتا از DW به SSAS می گوییم Process. معمولا شبی یک بار ETL انجام می دهیم و بعد Process. ممکن است سازمانی بخواهد لایو تر باشد در این صورت بیش تر از یک بار این کار را انجام می دهد. البته ما در ETL تغییرات اطلاعات را می آوریم یعنی Incremental اطلاعات را در DW بارگذاری می کنیم.

· بعد از فضای SSAS می رسیم به کاربران. می رسیم به داشبورد. می گوییم داشبورد چون شبیه داشبورد خودرو است وقتی ماشین را روشن کنیم یکسری gauges و چراغ روشن می شود که هر کدام آنها مشخص کننده چیزی هستند. ما همیشه سعی کنیم یک نگاه کلی از کل بیزینس به مدیر بدهیم و در صورتی که به جزییات علاقه داشت روی قسمتی که می خواهد کلیک می کند و جزییات را می بیند. یک بحثی که در طراحی داشبورد خیلی به آن توجه داریم KPI است. ما در طراحی داشبوردها به دنبال نمایش KPI هستیم.

KPI : Key Performance Indicator

· اعداد عملکرد به تنهایی معنا ندارند. مثلا فروش در ماه مهر 2 میلیارد تومن فروش داشت. آیا این خبر خوب است یا نه؟ باید نسبت به بازه های زمانی قبل مقایسه کنیم. درصد سود را باید ببینیم چقدر بوده (Profit Margin). باید ببینیم که هدف فروش را زدیم یا نه؟ باید ببینیم که سهم بازارمون کم شده یا زیاد شده؟ مثلا فروش سازمان ما نسبت به پارسال کم شده اما شاید فروش همه سازمان ها پایین آمده باشد در این حالت باید سهم بازار را باید ببینم چقدر بوده است. اما سهم بازار را به سختی می توان به دست آورد چون شرکت ها شفاف عمل نمی کنند. یا دیگه تعداد فروش به تعداد مشتریان (هر مشتری متوسط چقدر خرید کرده؟) یا فروش به تعداد فروشندگان (هر فروشنده متوسط چقدر فروخته است؟) ما به همین اینها می گوییم KPI. یعنی indicator هایی که می گویند عملکرد سازمان چگونه است؟ رمز موفقیت BI در داشتن KPI های با معنا و به درد بخور است. یک کارشناس BI باید با دیدن این KPI ها بتواند بیماری سازمان را تشخیص دهد و برای آن راهکار ارائه دهد.

· کارشناس BI باید در یک رشته خاص متخصص باشد و گرنه کارشناسی که فقط ابزار BI را بلد باشد فقط یک گزارش ساز است. به دنبال این باشید که در رشته ای که می خواهید متخصص شوید چه KPI هایی وجود دارد.

· پس ما در BI دنبال داشبورد هستیم. بعد روی داشبورد کلیک شد آنگاه گزارش بدهد که این گزارش باید نموداری و گرافیکی باشد. چون یک تصویر بهتر از صد صفحه مطلب است. در BI کمتر جدول به کار می آید و اولویت با نمودار و تصویر است. پس آخر سر می رسیم به Presentation.

· شما در یک گزارشی که در یک فضای relational با sql می نویسیم مهم نیست با چه ابزاری به sql وصل می شویم در نهایت به زبان sql کد می زنید. اما SSAS زبان sql نمی فهمد. SSAS زبان MDX و DAX به کار می رود. MDX هم برای Multidimensional و Tabular کار می کند و DAX فقط برای Tabular.

طراحی Data Warehouse
تعریف Data wareHouse
دو نفر در BI خیلی معروف هستند. پدر data warehouse به نام William H. (Bill) Inmon است و نفر دوم پدر BI است به اسم Ralph Kimball است.
این دونفر دوتا تعریف برای انبارداده ارائه داده اند که در آن تعریف Inmon کامل تر است.

تعریف Inmon:
A data warehouse is a subject-oriented, integrated, time-variant and Non-Volatile data base for the purpose of OLAP Reports.

تعریف Kimball:
A data warehouse is a copy of Transactional data specifically structured for the purpose of OLAP Reports.
پس هر دو متقاعدند که DW برای گزارشات OLAP طراحی شده است.

جزییات تعریف Inmon:
· subject-oriented: ما در هر پروژه BI باید موضوعات تحلیل را تعیین کنیم. به موضوعات تحلیل، محورهای طراحی نیز می گویند. محورهای طراحی اصطلاحا Dimension نامیده می شود. Dimension اطلاعاتی است که روی آن تحلیل می کنیم. مثل مشتری، کالا، فروشنده و ...
· در هر DW باید Dimension زمان داشته باشیم.

مثلا موضوعات تحلیل فروش: موضوعاتی که می خواهیم بر اساس آن فروش را تحلیل کنیم عبارتند از زمان بر اساس مشتری و یا گروه مشتری. بر اساس کالا و گروه کالا. بر اساس تقسیمات جغرافیایی. بر اساس فروشندگان. ولی مشکلاتی هم وجود دارد مثلا بر اساس گروه کالا تحلیل را قرار می دهیم ولی یک مرتبه می بینیم که در سیستم عملیاتی اصلا گروه بندی کالا ندارند.

 برای اینکه بتوانیم موضوعات تحلیل را خوب بشناسیم باید حتما سیستم های عملیاتی را بشناسیم. خیلی وقت ها نمی توانیم به سیستم عملیاتی چیزی که در BI لازم داریم به آن اضافه کنیم. پس باید ببینم که سیستم عملیاتی چی دارد و چه موضوعات تحلیلی را باید از آن استخراج کنیم. بعضی موقع ها برای شناخت موضوعات تحلیلی برعکس عمل می کنیم. یعنی از مدیریت می پرسیم که چه گزارشات تحلیلی نیاز دارند.

پس دو مدل داریم: مدل اول Bottom_Up یعنی از جزییات سیستم عملیاتی شروع کنیم ببینیم چه داده هایی در سیستم است وموضوعات تحلیلی آن چیست تا برسیم به داشبورد. مدل دوم Top_Down یعنی از داشبورد شروع کنیم و ببینیم چی میخواهیم آخر کار ارائه کنیم و برای ارائه آن در سیستم به چی احتیاج داریم. بهترین روش ترکیب این دو مدل است.

Kimball می گوید بیاید DW را کوچک بسازیم اصطلاحا Data Mart به آن می گوییم. Data Mart یک DW کوچک است خاص یک زیر سیستم. ایشان می گوید Data Mart بسازیم بعد Data Mart ها را آخر سر با هم تجمیع کنیم و یکی کنیم. اما آقای Inmon می گوید برعکس باید از اول یکپارچه باشد و همه زیر سیستم ها یک جا باشند.
https://learn.microsoft.com/en-us/power-bi/guidance/star-schema
https://www.gurusoftware.com/demystifying-fact-tables-vs-dimension-tables/?

· پس تشخیص Dimensionاولین گام در طراحی DW است. بعد از آن باید جداول Fact را شناسایی کنید. مایکروسافت به Fact Tables می گوید Measure Groups. جداول Fact جداول عملیاتی شما هستند جداول تراکنش های شما هستند. مثلا جدول فاکتورهای فروش، یا مثلا جدول وصولی مشتریان، جدول تولید، جدول اسناد حسابداری. پس دو نوع جدول شناسایی می کنیم 1- جدول Dimension 2- جدول Fact.
· جداول Dimension کلید اصلی خود را به عنوان کلید خارجی در جدوال Fact می گذارند.
· Fact دو نوع ستون دارد الف) کلید خارجی Dimension ب) Measures.

· Measure معمولا اعداد هستند که باید تجمیع شوند. مثلا تعداد فروش هر فاکتور، مبلغ فروش هر فاکتور

· یک بحث خیلی مشکل در طراحی DW، تفکیک جداول Dimension و جداول Fact است. در یک سیستم عملیاتی ممکن است در یک جدول Dimension یک سری اعداد باشند که جنبه Measure ایی دارند مثلا در جدول کالا که جدول Dimension ما است فیلد های قیمت فروش و متوسط خرید و نقطه سفارش اگر داشته باشیم. باید این ها را پاک سازی کنیم.

· در جدول Dimension سه نوع فیلد داریم 1- Key Column: کلید Dimension یک کلید خاص است و با کلید اصلی فرق دارد. 2- Name Column اون چیزی است که می خواهیم به کاربر به جای Key نشان دهیم. 3- attribute که برای Slice و Dice استفاده می شود. Slice یعنی فیلتر کردن یعنی ستون هایی که جلوی Where قرار می گیرد. Dice یعنی Group by.

· ویژگی که ارزش Slice و Dice ندارد باید از جدول Dimension حذف شود.

· Attribute ها به دو دسته تقسیم می شوند: 1- discrete 2- Continuous. اطلاعات پیوسته در مباحث تحلیل به کار نمی آید مثلا حقوق پرسنل به صورت پیوسته به کار نمی آید باید اطلاعات پیوسته را باید رنج بندی و دسته بندی کنیم و به اطلاعات گسسته تبدیل کنیم (discretize) تا بتوانیم تحلیل کنیم چون عدد پیوسته ارزش تحلیل ندارد. این کارها را در عمل ETL داده ها رنج بندی می کنیم و کد رنج آن را در Dimension می بریم.

· در جداول Fact هم ممکن است اطلاعاتی قرار داشته باشد که جنبه Dimension ایی دارد. مثلا در جدول Orders، فیلد OrderID کلید آن است. فیلدهای CustomerId، EmployeeId، OrderDate، RequiredDate، ShippedDate، ShipVia کلید خارجی هستند. Frieght یک Measure است ولی بقیه یعنی فیلدهای ShipName، ShipAddress، ShipCity، ShipRegion، ShipPostalCode، ShipCountry باید پاک سازی شوند چون این فیلدها ارزش Slice و Dice دارند و چنین فیلدهایی در جدول Fact ممنوع است اگر بخواهیم این ها را داشته باشیم باید Dimension مربوط به آن را بسازیم و کلید آن را به عنوان کلید خارجی در جدول Fact بیاریم.

· Integrated: فرض کنیم شرکت شما 30 تا شعبه دارد و هر کدام از این شعبه ها دیتابیس جدا دارد و با Replication این دیتا در تهران می آید. وقتی همه این 30 شعبه بخواهند در یک DW آورده شوند مشکلات شروع می شود. مثلا همه شعبه ها شماره فاکتورهاشون از 960001 شروع شده ولی ما نباید شماره فاکتور تکراری داشته باشیم. مثلا کد کالاها یونیک نیست مثلا یک شعبه به ماژیک قرمز کد 100 و یک شعبه دیگر به ماژیک قرمز کد 101 داده است. پس باید یک کاری کنیم که این کدها را یکپارچه کنیم. در این صورت یک راهکار این است که یک Mapping Table بسازیم که مثلا ماژیک قرمز با هر کدی در هر شعبه نگاشت شود به کد 100. این موضوع نگاشت یک موضوع همیشگی هست و یک نفر همیشه باید این نگاشت را انجام دهد. بعضی موقع این نگاشت خیلی سخت می شود مثلا در مورد این که سه تا کد کالا به یک کد مرجع نگاشت شود مشکل نیست ولی اگر بخواهیم تشخیص بدهیم که یک کد کالا به کدوم از 3 تا کد کالای مرجع نگاشت شود دشوار است. یا مثلا اگر هر شعبه ای با واحد اندازه گیری متفاوت یک کالا را فروخته باشد ولی در DW باید واحدهای اندازه گیری یک کالا، یکی شود و یا اینکه یکی نشوند ولی یک Dimension واحدهای اندازه گیری، ضریب های تبدیل و...

· یک بحث مهم در BI، بحث Master Data است. یعنی داده های پایه همه باید در دفتر مرکزی تعریف بشوند و از دفتر مرکزی به شعبه برود و شعبه حق ندارد خودش اطلاعات پایه را تعریف کند و باید از دفتر مرکزی باید تعریف شود و با Replication برود به شعبه. ولی همه این ها بحث دارد مثلا مشتری Master Data باشد یا نه؟

· time-variant: متغیر با زمان: زمان یک از مهمترین ابعاد تحلیل است. بعید است یک پروژه BI داشته باشید و در آن بعد زمان نداشته باشید. بعید است که از شما تحلیل های زمانی نخواهند. یعنی در جداول Fact همیشه باید یک فیلد زمان داشته باشید. برای زمان همیشه یک جدول زمان در DW می سازیم.

· اشکالات افزونگی در یک بانک OLTP چیست؟ سرعت. افزونگی دیتا اینتری را کند می کند چون آپدیت آن سخت تر است چون باید n تا رکورد آپدیت شود به جای یک رکورد. حجم ذخیره سازی بالا می رود. همه اینها به کنار، بزرگترین مشکل افزونگی این است که ممکن است منجر به مغایرت شود مثلا یک جا را ویرایش کنیم ولی بخش دیگری که همون دیتا به صورت افزونه ایجاد شده است آپدیت نشود پس یکپارچگی از بین می رود. وقتی بانک نرمالایز باشد هیچ وقت مغایرت نداریم. در DW نگران ایجاد مغایرت نیستیم چون دستی اطلاعات وارد نمی کنیم. ETL دیتا را می آورد. پس ما این همه افزونگی را ایجاد می کنیم که سرعت بالا در گزارش گیری داشته باشیم.

· non-volatile: داده های یک دیتابیس نباید فرار باشند. یعنی باید سابقه تغییرات دیتا را نگه داریم. کدام دیتا؟ برای Measure سابقه نگه نمی داریم مثلا تغییر تعداد کالا در فاکتورهای روزانه نگه داشتن سابقه آن ارزش ندارد. آن چیزی که سابقه آن را نگه می داریم تغییرات Attribute های Dimensional. البته باز هم نه همه تغییرات ویژگی ها. مثلا ویژگی آخرین مقطع تحصیلی در جدول مشتریان در صورتی سابقه تغییرات آن را نگه می داریم که این تغییرات را برای ما ارزش تحلیلی داشته باشند.

· نگه داشتن سوابق تغییرات با استفاده از کامپوننتی در فضای SSAS به نام Slowly changing Dimension(SCD) انجام می شود. وظیفه SCD این است که تغییرات ویژگی های Dimension ها را پیدا کند و سپس ما در SCD تعیین می کنیم کدام ویژگی ها Historical هستند و کدام نیستند. در صورتی که Historical باشد آنگاه SCD یک سطر اضافه می کند و در DW یک کد جدید به نام Surrogate Key به آن تعلق می گیرد

· در data warehouse برای dimension دو تا کد داریم 1- business key که همان کلید سیستم عملیاتی است 2- surrogate key که یک کد identity بی معنی است و کلید اصلی جدول dimension است. اما business key در جدول dimension یونیک نیست چون ممکن است changing attribute داشته باشیم و در آخر surrogate key در جدول fact قرار می گیرد.

Data Warehouse Design

· وقتی می گوییم DW Design منظورمان طراحی Dimension ها و Fact ها است و باید این دونوع جدول را طراحی کنیم.
· به یاد بیاورید که DW یک بانک Relational است یعنی در این مرحله ما هنوز در فضای SSAS وارد نشده ایم و مفهومی به نام مکعب در DW نداریم. مکعب ها در SSAS ساخته می شوند. پس در DW جداول Dimension و Fact را طراحی می کنیم.
· به جداول Dimension، جداول بعد هم می گوییم چون Dimension ها اضلاع مکعب ها خواهند بود. هر نقطه از مکعب تقاطع آدرسی است که می خواهیم روی Dimension ها داشته باشیم.
[image:]
طراحی Dimension
· جداول Dimension معمولا اسم آنها را با Dim شروع می کنیم مثلا DimDate، DimProduct و ...
· به مقادیر Distinct شده یک ویژگی، اعضای آن ویژگی می گوییم.

یک Dimension باید یک سری Attribute (ویژگی) باید داشته باشد:
· اولین ویژگی که برای Dimension تعریف می کنیم کلید آن است. کلید Dimension همانی است که در جدول fact به عنوان کلید خارجی استفاده خواهد شد. معمولا این کلید یک identity است بعضی وقتها به آن Surrogate key (ترتیبی بی معنی) می گوییم.
· بعد از آن Name Column را می آوریم. نامی که به کاربر را نشان می دهیم. اگر بخواهیم در گزارشات رکوردهای dimension را نشان دهیم کلید را نمی آوریم Name column را می آوریم. مثلا productName در جدول products. برای سایر ویژگی ها هم تا جایی که امکان دارد کد و نام بیاورید. چرا کد و نام؟ 1- چون ممکن است دوتا عضو Dimension ویژگی آن ها مشابه هم باشد یعنی تشابه اسمی داشته باشند و ما بخواهیم این دو جدا از هم نگه داری شوند. مثلا ویژگی نام شهر در استان های مختلف ممکن است مشابه داشته باشند مثلا لنگرود گیلان و لنگرود قم. اگر لنگرود را کد ندهیم یک عضو به اسم لنگرود داریم که تجمیع آن دو لنگرود در آن می نشیند. البته اگر به تفکیک استان و بعد شهر گزارش بگیریم مشکل حل می شود ولی اگر به شهر فقط گزارش بگیریم باید کد بدهیم. 2- برای اینکه بتوانیم Multilinguals کار کنیم یعنی پروژه های چند زبانه بسازیم یعنی داشبوردی بسازیم که کاربر بسته به اینکه چه زبانی را انتخاب می کند داشبورد را به زبان خودش ببیند در آن صورت باید کد داشته باشیم. البته تا جایی که امکان داشته باشد کد و نام می گذاریم مثلا برای نام کارمندان نیازی نیست کد بگذاریم.
· بعد از آن یک کلید دیگر داریم به اسم Business key که می تواند یونیک نباشد این کلید همان کلید سیستم عملیاتی است. ما معمولا Business Key را به عنوان کلید Dimension استفاده نمی کنیم و خودمان یک کلید اضافه می کنیم. البته این کار یک دردسر هم دارد و آن این است که وقتی داریم جداول Fact را بارگذاری می کنیم و می خواهیم اطلاعات تراکنش ها را به جدول fact منتقل کنیم باید business key را در جدول Dimension سرچ کنیم و کلید Surrogate را برداریم و در جدول fact بگذاریم. پس ما داریم یک کار اضافه به خودمان تحمیل می کنیم.
سوال: آیا ممکن است از همان Business key به عنوان کلید Dimension استفاده کنیم؟
· به شرطی که Historical attribute نداشته باشیم و نخواهیم تاریخچه تغییرات را نگه داریم این کار اشکال ندارد.
سوال: چرا روی Identity بودن تاکید داریم؟
· چون ستون identity ، read only است و قابل ویرایش نیست و در این صورت ما بحث تغییر در کلید را نخواهیم داشت.
· ویژگی های یک Dimension باید ارزش تحلیلی داشته باشند یعنی استفاده شوند برای Slice & Dice.
· Slice یعنی where یعنی فیلتر
· Dice یعنی group by
· از چه چیزهایی در جدول Dimension پرهیز کنید؟
· اطلاعاتی که جنبه تحلیل ندارند را حذف کنید. تا می توانید Dimension هاتون کوچک باشد. هر ویژگی که برای Dimension بگذارید در مکعب تون باید جا برای آن درنظر گرفته شود. بنابراین بیخودی Dimension ها را بزرگ نکنید چون باعث بزرگ شدن مکعب ها می شود هر چقدر هم حجم بزرگ تر شود Performance پایین می آید.
· در Dimension از اطلاعاتی که عددی هستند و جنبه محاسبات دارند مثلا در جدول کالا، موجودی کالا (موجودی در لحظه کالا). اگر قرار است روی این ها محاسباتی انجام شود باید برای آنها Fact بسازیم. بعضی وقتها لازم است از یک جدول پایه در سیستم عملیاتی دو تا جدول بسازیم یکی جدول dimension و یکی جدول fact یعنی مقادیر عددی که در آن Dimension وجود دارد مثلا در بانک northwind در جدول products ستونی داریم به اسم unitprice به عنوان ویژگی معنی ندارد چون تحلیلی روی آن نمی توان داشت و اگر بخواهیم روی آن تحلیل کنیم باید discretize کنیم یعنی رنج گذاری کنیم. پس اطلاعات عددی اگر بخواهند تحلیلی باشند باید رنج بندی شوند. ولی اگر بخواهیم روی UnitInStock، UnitOnOrder، ReorderLevel بخواهیم تحلیل های محاسباتی و ریاضی داشته باشیم مثلا تجمیع موجودی را بخواهیم باید برای آن جدول Fact بسازیم.
بحث بعدی در طراحی Dimension Hierarchy
· Hierarchy یعنی سلسله مراتبی. ما سعی می کنیم تا حد ممکن برای سطوح یک Dimension، Hierarchy بسازیم. مثلا در DimDate، داریم سال، فصل، ماه، هفته، روز و یا در تقسیمات جغرافیایی درایم کشور، استان، شهر و یا در اطلاعات کالا داریم گروه اصلی کالا، گروه فرعی کالا، کالا. این چند مثال از نوع Natural Hierarchy بودند.
انواع Hierarchy:
1) Natural Hierarchy
2) User Defined Hierarchy or Reporting Hierarchy or ad_hoc Hierarchy
3) Parent_Child Hierarchy

نوع اول Natural Hierarchy
این نوع سلسله مراتبی است که منطقا وجود دارد. مثلا یک سال 4 تا فصل دارد و هر فصل برای یک سال است. یک فصل 3 تا ماه دارد و هر ماه برای یک فصل است و.... پس این رابطه یک به چند به صورت طبیعی در دیتای ما وجود دارد.
نوع دوم Reporting Hierarchy
به این نوع سلسله مراتبی، سلسله مراتب ad_hoc (سلسله مراتب همینجوری) نیز می گویند. مثلا یک ad_hoc برای جنسیت و وضعیت تاهل به وجود بیاوریم و گزارش فروش به تفکیک این سلسله مراتب را بگیریم مثلا فروش اول به تفکیک جنسیت و بعد ریزتر گزارش فروش برای زن مجرد و زن متاهل و گزارش فروش برای مرد مجرد و مرد متاهل.
در ad_hoc Hierarchy رابطه از نوع چند به چند است یعنی به عنوان مثال بین جنسیت و وضعیت تاهل رابطه چند به چند وجود دارد.
سوال: Reporting Hierarchy چه استفاده ای دارد؟ کاربر راحت تر می تواند گزارش بگیرد برای مثال بالا در صورتی که نخواهیم از این نوع سلسله مراتبی استفاده کنیم هر بار که بخواهیم گزارش بگیریم این سلسله مراتب را باید خودمان به وجود آوریم.

فواید Hierarchy
1) پس Hierarchy کمک می کند که کاربر به آرامی وارد جزییات گزارش شود یعنی drill down کند یعنی از کل به جز در گزارش ریز شود. برعکس آن هم roll up کند یعنی از جز به کل گزارش بگیرد.
2) اگر Hierarchy از نوع natural باشد ما بعد از اینکه Hierarchy را ساختیم می رویم ارتباط بین سطوح Hierarchy را تعریف می کنیم (به آن می گوییم Attribute Relationship) که باعث می شود performance گزارش گیری بالا برود. پس Hierarchy اگر Attribute Relationship تعریف شود یعنی اگر تعریف بین ویژگی ها را انجام دهیم که کدام ویژگی ها تجمیع می شوند و به سطح بالاتر می رسند حالا SSAS دوتا استفاده از آن می کند.

نوع سوم Parent_Child Hierarchy : منظور self join است مثلا چارت سازمانی. اگر در جدول، self join داشته باشیم به صورت خودکار یک رابطه parent_child در آن Dimension برای آن ساخته می شود این Hierarchy را نیازی نیست بسازید.

دی نرمالزاسیون در Dimension ها
از جلسه قبل به یاد دارید که در DW ما به دنبال دی نرمالزاسیون هستیم. یعنی نرم، دی نرمالزاسیون است. همانطور که در فضای OLTP نرم، نرمالزاسیون است در این محیط نرم آن دی نرمالزاسیون است. یعنی تا می توانید باید جداول را باهم join کنید و join شده ذخیره کنید فایده آن این است که سرعت گزارشات بالاتر می رود. هر چه join کمتر سرعت گزارشات بالاتر است.
در فضای OLTP باید نرمالایز طراحی کنیم به خاطر مزایای نرمالزاسیون که عبارتند از:
· در فضای OLTP می خواهیم افزونگی نداشته باشیم و حجم ذخیره سازی را کاهش دهیم که RAM و دیسک کمتر اشغال شود
· افزونگی ممکن است باعث ایجاد مغایرت شود.
در فضای OLAP یا DW نیازی نیست جداول جدا باشد می خواهیم دی نرمالزاسیون کنیم چون در آنجا سرعت گزارش مهم است و حجم ذخیره سازی اصلا مهم نیست و نگران مغایرت نیستیم چون با ETL دیتا را می ریزیم و کاربر دیتا اینتری نمی کند.

دی نرمالزاسیون جداول Dimension
[image:]
نکته: در فضای SSAS یا DW، Relation ها را از سمت Details به سمت Master نشان می دهیم.
در دیاگرام بالا به سه روش می توانیم دی نرمالزاسیون داشته باشیم:
1) سه تا Dimension بسازیم: DimProduct, DimSubCategory, DimCategory
2) می توانیم هر سه تا را با هم یکی کنیم و یک Dimension بسازیم: DimProductSubcategoryCategory
3) دوتا Dimension بسازیم: DimCategorySubcategory و DimProducts

· هر سه تا روش درست است. ممکن است در DW سه تا جدول را تکی Dimension کنید و بعدا در مکعب بازهم آنها را دی نرمالزاسیون کنید. یعنی ما دو مرحله فرصت داریم که در مورد دی نرمالزاسیون تصمیم بگیریم. یک مرحله هنگام ETL و یک مرحله دیگر هنگام ساخت مکعب است. البته اگر قرار است که دی نرمالزاسیون داشته باشیم بهتر است هنگام ETL این کار را انجام دهید چون سرعت Process بیشتر می شود.
· اگر سه تا جدول را یک Dimension کنیم در این صورت یک ویژگی داریم به اسم SubCategoryName و SubcategoryId و یک ویژگی به اسم CategoryName و CategoryId. سپس می توانیم یک Hierarchy بسازیم گروه کالا، زیرگروه کالا، کالا. پس اینجا یک Hierarchy سه سطحی داریم. اما در روش سوم یک Hierarchy دو سطحی داریم و در روش اول اصلا نمی توانیم Hierarchy بسازیم.

مزایای Hierarchy سه سطحی :
1) یک حسن این ادغام داشتن Dimension های چند سطحی است.
2) سرعت به حداکثر می رسد.

این طور به نظر می رسد که منفعت در حداکثر دی نرمالزاسیون است یعنی حالت دوم که سه سطح داریم بهتر است. اما همه جا این طور نیست. اگر قرار است این جداول به تنهایی معنا داشته باشند نباید آنها را ادغام کنیم به طور مثال در بانک northwind می خواهیم گزارش بگیریم که هر کالا مربوط به کدام تامین کننده است و یا از چه شهر یا کشوری تامین شده است. پس اگر جداول products و suppliers را باهم ادغام کنیم درست است اما دیگر مفهومی به نام تامین کننده را از دست داده ایم یعنی یک محور تحلیل، یک بعد تحلیل به نام تامین کننده را از دست داده ایم و اکنون اگر بخواهیم fact قراردادهای تامین کننده را با جدول تامین کننده ادغام کنیم دیگر نمی توانیم چون الان تامین کننده به عنوان یک ویژگی درون جدول کالا قرار گرفته است و ما نمی توانیم قرار دادها را به جدول Dimproduct وصل کنیم.
· زمانی یک جدول را با جدول دیگر ادغام می کنیم و آن را درون یک جدول دیگر می بریم که واقعا به مفهوم آن به تنهایی نیاز نداشته باشیم.

فرض کنید یک Fact داریم به نام برنامه ریزی فروش که براساس گروه اصلی کالا برنامه ریزی می کند و به ریزکالا برنامه ریزی نمی کند. پس نیاز داریم که کلید خارجی گروه کالا را در Fact برنامه ریزی فروش قرار دهیم. اگر گروه کالا را ادغام نکرده باشیم گروه کالا یک موجودیت است و کلید آن واضح است و آن را به Fact برنامه ریزی فروش وصل می کنیم و بدون مشکلی گزارش می گیریم. ولی اگر گروه کالا را ادغام کرده باشیم و در دل کالا باشد دراین قبیل موارد دو راهکار وجود دارد.
· اولین گام در طراحی Fact Table تعیین میزان Granularity یا ریزدانگی جدول Fact است. منظور از ریزدانگی، پایین ترین سطح اطلاعات است که در جدول Fact ذخیره می شود. ریزدانگی به سطح داده غیر مجتمع گفته می شود. ریزدانگی سطح تحلیل رامعین می کند. مثلا اگر داده های غیرمجتمع در سطح روز ذخیره شده باشند، امکان تحلیل در سطح ساعت وجود نخواهد داشت. ریزدانگی زمانی تعریف می شود که می خواهیم رابطه بین یک Dimension و Fact را تعریف کنیم یعنی وقتی درباره اتصال Dimension و Fact حرف می زنیم باید بگوییم که ریزدانگی آن چگونه است. تعیین ریزدانگی دو مرحله دارد:
1) تعیین Dimension هایی که کلید آن در جدول Fact قرار می گیرد.
2) تعیین تعداد سطوح Hierarchy هر Dimension ایی که کلید آن در جدول Fact نگه داری می شود.
صورت مسئله: تصور کنید که Category، SubCategory و Products را باهم join کرده ایم و Dimension ایی به نام DimCategory نداریم ولی برنامه ریزی فروش را برحسب Category می خواهیم یعنی جدول Fact ایی داریم که ریزدانگی آن در حد کلید Dimension نیست. چه کار کنیم؟ دو راهکار وجود دارد:
1) بگوییم ریزدانگی این Fact در حد درشت تر از کلید است یعنی در DimProduct ارتباط را به ProductId ندهیم و به CategoryId بدهیم. اصطلاحا می گوییم ریزدانگی Fact درشت از کلید Dimension است. این روش کند است.
2) روش آسان تر و سریع تر: مثلا اگر برنامه ریزی فروش را برای گروه کالای دوچرخه می خواهیم بیاییم همه برنامه ریزی فروش را به صورت سوری برای یک مدل دوچرخه خاص بدهیم این طوری به کلید وصل می شویم و گزارش گروه کالای دوچرخه را می گیریم.

دی نرمالزاسیون جداول Fact

· جداول Fact، جداولی هستند که در آن تراکنش ها در آن ثبت می شود. مثلا عملیات فروش، عملیات حمل، عملیات وصول، عملیات برنامه ریزی.
· در جدول Fact، غیر از کلید دو نوع ستون داریم: 1- کلید خارجی Dimension 2- Measures یا به عبارتی مقادیر یعنی اعدادی را که می خواهیم روی آن تجمیع انجام دهیم و بر اساس Dimension ها آن را تحلیل کنیم. پیش فرض تجیمع Sum است.
· Measure ها به صورت تجمیع شده در مکعب ذخیره می شوند. در واقع Measure ها روی کلید Dimension تجمیع می شوند. یعنی ریزتر از کلید Dimension در مکعب دیتا نداریم. این تجمیع تنها تجمیعی است که همیشه در مکعب داریم. یعنی نمی توانیم مثلا از یک مکعب یک فاکتور خاص را پرینت بگیریم. به طور مثال فرض کنید که Dimension روز را وصل کرده اید به fact فروش و Dimension های ما عبارتند از کالا، شهر، روز و 100 کالا و 30 شهر و 365*10 روز دیتا داریم در این صورت 100*30*365*10 تا مکعب ما سلول دارد در حالی که جدول Fact فروش خیلی بیشتر از این رکورد دارد چون ممکن است در یک روز در یک شهر و یک کالای خاص 500 تا فاکتور ثبت شده باشد اما اینها در جدول Fact است و وقتی دیتا در مکعب Process و بارگذاری می شود روی کلید Dimension تجمیع می شود.
· مکعب آن اعضایی از Dimension را دارد که حداقل یک Measure در یکی از سلولهای مکعب آن قرار گرفته باشد. مثلا اگر یک کالایی در یک روز در یک شهر فروش نداشته باشد سلول آن و جود دارد ولی در آن NULL قرار می گیرد مگر اینکه کلا در آن روز با هیچ کالایی و با هیچ شهری دیتا نداشته باشیم که در آن صورت آن سلول در مکعب نیست.
· جداول Fact هم ممکن است Master و Details داشته باشند مثل فاکتور فروش، وصول مشتری و ... بسیاری از مواقع جداول عملیاتی Master و Details دارند مثلا در فاکتور فروش در جدول Master آن شماره فاکتور، تاریخ فاکتور، کد خریدار، کد فروشنده، هزینه حمل فاکتور و در جدول Details آن شماره فاکتور، کدکالا، تعداد کالا، مبلغ، تخفیف، مالیات داریم. وقتی این دو تا جدول را باهم ادغام کنیم هر فاکتور به تعداد ردیف هایش تکرار می شود یعنی جداول Fact هم دی نرمالایز می کنیم. اما یک محدودیت داریم: Measure هایی که در جدول Master قرار دارند تکرار می شوند مثلا در فاکتور فروش هزینه حمل داریم بنابراین وقتی فاکتور فروش را با جدول Detail ادغام می کنیم این هزینه به تعداد سطرهای فاکتور تکرار می شود و این باعث خراب شده گزارشات می شود مثلا یک فاکتور هزینه حمل آن 100 دلار باشد و این فاکتور 5 ردیف داشته باشد الان هزینه حمل آن با این ادغام 500 دلار می شود برای حل این مشکل دو راهکار وجود دارد 1- این دو جدول را ادغام نکنیم که در این صورت نمی توانیم بگوییم هزینه حمل به ازای هر کالا چقدر است. 2- Measure های جدول Master روی Details شکسته شود.
· دی نرمالزاسیون در جداول Fact تا جایی مجاز است که بتوانیم Measure های جدول Master را روی رکوردهای Details تقسیم کنیم. مثلا هزینه حمل را می توانیم به تعداد ردیف های فاکتور تقسیم کنیم یا به وزن کالا تقسیم کنیم و یا به حجم کالا تقسیم کنیم و یا.... اگر نمی توانیم Measure های Master را خرد کنیم و یا این خرد کردن سبب تقریبی شود که قابل پذیرش برای ما نباشد بهتر است از دی نرمالزاسیون منصرف شویم .
· برای جداول Fact هم دی نرمالزاسیون خیلی خوب است باعث می شود سرعت بالاتر رود. هر چه join کمتر سرعت بالاتر. اما گاهی اوقات measure ها انقدر مهم هستند که نمی توان تقریب را برای آنها قبول کرد.
· برای جداول DW هم می توان ایندکس گذاشت چون عمل Process که اطلاعات را از DW به SSAS می برد کوئری سلکت اجرا می کند و بانک Relational غیر سلکت نمی فهمد حال اگر کلیدهای خارجی را ایندکس کرده باشیم خیلی سریع تر می توانیم Join انجام دهیم پس ایندکس، سرعت Process را بالا می برد. البته چون ایندکس عمل insert را کند می کند قبل از ETL باید ایندکس ها را غیر فعال کنیم و بعد از پایان ETL دوباره ایندکس ها را Rebuild کنیم.
· از 2014 به بعد یک ایندکس جدید آمد به نام Column store index که با این ایندکس جدید، کوئری های تجمیعی روی جداول Relational هم خیلی سریع جواب می دهند. بنابراین یک تز در مایکروسافت این است که BI را بگذاریم کنار و DW طراحی کنیم ولی گزارشات را با زبان sql از خود DW بگیریم و در واقع Live Analytic داشته باشیم. در 2016 این ایندکس ها Updatable شدند قبلا ReadOnly بودند بنابراین حتی می توانیم از بانک OLTP گزارشات تحلیلی بگیریم.

انواع مختلف اتصال جداول Dimension به جداول Fact
سه نوع ارتباط داریم:
1) Star Schema (ساختار ستاره ای)
2) Snowflake Schema (ساختار دانه برفی)
3) Constellation Schema (ساختار صورت فلکی)

ساختار ستاره ای
در این ساختار n تا Dimension مستقیما به جدول Fact وصل هستند. ارتباط ستاره ای بهترین و سریع ترین نوع ارتباط است و باید سعی کنیم حدالامکان ارتباط ها را ستاره ای کنیم.

[image:]

ساختار دانه برفی
در ساختار Snowflake جداول Dimension باهم دی نرمالایز نشده اند اما در ستاره ای جداول Dimension یک شده اند.
[image:]
باید سعی کنیم به سمت ستاره ای برویم. یک خوبی مدل ستاره ای این است که روابط به صورت خودکار توسط مکعب استفاده می شود یعنی وقتی ارتباط ستاره ای است نیازی نیست در مکعب رابطه را تعریف کنید یعنی در این مدل مثلا می توانیم به راحتی فروش به تفکیک زمان، به تفکیک مشتری، به تفکیک کالا گزارش بگیریم. اما در مدل Snowflake اگر بخواهیم فروش به تفکیک گروه مشتری بگیریم نمی توانیم مگر اینکه این رابطه را تعریف کنیم. خواهید دید که در طراحی مکعب فقط رابطه ستاره ای اتوماتیک تشخیص داده می شود سایر روابط را باید در طراحی مکعب تعیین کنیم.

ساختار صورت فلکی

در این ساختار چندتا Snowflake یا چندتا Star را بهم وصل کرده ایم. در Constellation قطعا حداقل دوتا Fact داریم مثلا Fact فروش و Fact تولید. قطعا باید این Fact ها یک Dimension مشترک داشته باشیم. Constellation نمی توانیم بسازیم مگر اینکه Dimension مشترک داشته باشیم. Dimension زمان همیشه مشترک است. به ندرت پیش می آید که Fact ایی داشته باشیم که Dimension زمان نداشته باشد.
[image:]

· به Dimension مشترک Conformed Dimension (Dimension توافق شده) می گوییم. پس وقتی می خواهیم Constellation داشته باشیم حتما باید Conformed Dimension داشته باشیم.
· در یک مکعب نمی توانید دو تا Fact ای داشته باشید که باهم رابطه و Dimension مشترک نداشته باشند. دریک مکعب هر چندتا Fact ای که می خواهیم می توانیم داشته باشیم ولی باید حتما Dimension مشترک داشته باشند.
· هر دو Fact ای را در یک مکعب نمی گذاریم Fact هایی را در یک مکعب می گذاریم که می خواهیم براساس آن گزارش ترکیبی بگیریم مثلا در هر روز چقدر تولید کرده ام و چقدر فروخته ام و یا در هر روز چقدر هزینه تولید و چقدر درآمد فروش بوده و در نتیجه سود هر روز چقدر است.
· همیشه هر دو Fact ای معنی ندارد باهم دریک مکعب باشند مثلا Fact تولید با Fact وصول مشتری با هم در یک مکعب به درد نمی خورد. هیچ n تا Fact ای را در یک مکعب نمی گذاریم مگر اینکه گزارش ترکیبی از این n تا Fact معنادار باشد.
· فرض کنید می خواهیم در این مدل گزارش بگیریم که یک ماده اولیه خاص در یک محصول خاص چقدر فروش رفته است. این گزارش را نمی توانیم بگیریم چون رابطه ماده اولیه و کالا یک رابطه چند به چند است و یک ماده اولیه توی محصولات مختلف استفاده می شود و این محصولات در شعب مختلف فروش می رود. یعنی نمی توانیم از یک Dimension ای که مشترک نیست با Fact ای که به آن متصل نیست گزارش بگیریم. در همین مثال اخیر در صورتی می توانیم گزارش بگیریم که Fact دیگری به نام فرمولاسیون کالا داشته باشیم که نشان دهد در هر ماده اولیه در این فروش چند درصد آن مربوط به ماده اولیه مورد نظر ما است. این گونه گزارشات چند به چند معمولا بی معنی است ولی ممکن است در مکعب بخواهیم از یک Dimension با Fact ای که به آن وصل نیست گزارش بگیریم جوابی که از این گزارش می گیریم درست نیست ولی بعضی مواقع همین جواب نادرست ارزش تحلیل دارد.

🎯 معرفی Power BI و نسخه‌های مختلف آن
Power BI فقط یک نرم‌افزار نیست؛ یک اکوسیستم کامل است که از چند ابزار و سرویس تشکیل شده و در کنار هم امکان اتصال، آماده‌سازی، مدل‌سازی، تحلیل و اشتراک‌گذاری داده را فراهم می‌کنند. اجزای اصلی آن عبارتند از:

1) Power BI Desktop
ابزار اصلی برای ساخت گزارش و داشبورد.
قابلیت‌ها:
· اتصال به انواع منابع داده
· پاک‌سازی و تبدیل داده‌ها (Power Query)
· مدل‌سازی و تعریف رابطه بین جداول (Power Pivot)
· ساخت نمودارها، KPIها و ویژوال‌ها (Power View)
· ذخیره گزارش‌ها با پسوند PBIX
· انتشار گزارش در سرویس آنلاین یا Report Server
مناسب برای:
کارشناسان BI، پشتیبان‌ها، تحلیل‌گران، گزارش‌سازها.

2) Power BI Service (نسخه آنلاین/Cloud)
بستر ابری Power BI برای انتشار، اشتراک، دسترسی و همکاری تیمی.
قابلیت‌ها:
· مشاهده داشبورد و گزارش در مرورگر
· اشتراک‌گذاری با کاربران سازمان
· به‌روزرسانی زمان‌بندی‌شده داده‌ها (Scheduled Refresh)
· ایجاد Workspace برای همکاری
· امنیت و کنترل دسترسی (RLS)
· ویرایش گزارش‌ها در محیط آنلاین
مناسب برای:
کاربران نهایی، مدیران، سازمان‌هایی که همکاری آنلاین و اشتراک‌گذاری نیاز دارند.

3) Power BI Mobile (iOS / Android)
اپلیکیشن موبایل برای مشاهده داشبورد و گزارش‌ها در هر مکان.
قابلیت‌ها:
· نمایش داشبوردهای منتشرشده
· Drill, Filter, Interact
· هشدارهای مدیریتی و KPI
· مناسب مدیران در سفر یا محیط عملیاتی

4) Power BI Report Server (نسخه لوکال On-Premises /)
راهکار Power BI مخصوص سازمان‌هایی که نمی‌خواهند داده از شبکه داخلی خارج شود.
قابلیت‌ها:
· انتشار و مدیریت گزارش‌ها روی سرور داخلی
· پشتیبانی از PBIX و RDL
· امنیت و کنترل کامل در داخل شرکت
· دسترسی از طریق مرورگر داخلی سازمان
مناسب برای:
بانک‌ها، بیمه، شرکت‌های دولتی، سازمان‌هایی با محدودیت Cloud.

5) Power BI Gateway
پل ارتباطی بین منابع داده داخلی (On-Premises) و گزارش‌های آنلاین Power BI.
نقش:
· اجازه می‌دهد داده‌های داخل شبکه شرکت در گزارش‌های Cloud به‌روزرسانی شوند.
· دو نسخه دارد: Personal و Enterprise.

6) Power BI Embedded
نسخه مخصوص توسعه‌دهندگان (Developer).
کاربرد:
· قراردادن گزارش‌ها و داشبوردهای Power BI داخل سایت‌ها، پورتال‌ها یا اپلیکیشن‌های سازمانی.
· استفاده در محصولات نرم‌افزاری که نیاز به بخش گزارش‌گیری داخلی دارند.

7) اجزای داخلی Power BI (Heritage Components)
ابزارهایی که داخل Power BI قرار دارند و ستون اصلی پردازش داده هستند:
Power Query
· ابزار آماده‌سازی و تبدیل داده‌ها (ETL)
· پاک‌سازی، ادغام، استخراج، فیلتر، Transform
Power Pivot
· مدل‌سازی داده
· تعریف روابط (Relationship)
· محاسبات با DAX
Power View
· ساخت نمودارها و ویژوال‌های تعاملی

8) پشتیبانی از منابع داده متنوع
Power BI تقریباً به هر نوع داده‌ای متصل می‌شود، از جمله:
· Excel، CSV، JSON
· SQL Server، Oracle، MySQL
· Azure Services
· Web APIs
· دیتابیس‌های On-Prem و Cloud
· انبارهای داده مدرن

· از آنجا که Power BI محصولی از مایکروسافت است و اتصال‌های داخلی (Built-in) به Excel دارد، بسیاری از قابلیت‌ها و عملکردهای آن برای کاربران Excel آشنا خواهد بود.

PBIDesktopSetupRS_x64.exe:
https://www.microsoft.com/en-us/download/details.aspx?id=106035
Microsoft Power BI Report Server - January 2025:
https://www.microsoft.com/en-us/download/details.aspx?id=105943

[image: Downloading and Installing Power BI Desktop]
image3.png

image4.png
Category 4—|

SubCategory 4—\

Products

image5.png
Item Dimension Table

Time dimension Table STAR SCHEMA

Sales Fact Table

[[reveer]
[[rweo |

CH_ID
LOCATION_ID

image6.png
ReGION

oisTRICT

TIME.

Time 10
Dy of Weok
Vicek of Monh
Mo

Contury
Season Name

et

sTore.

Dl 0
Ditnct Name
Disrict Locaton
Region 10

o>
Storo Addross
Sauare Foot
Dt D

Time 10
Stre D
Product 1D
Customer D
Dolar Saios
Unit Saies
Paymont e

PRODUCT
Product D
product hame
Praduct Catgary
procuct Prics|
Praduct Size
Product Color

cusTomEn
Gustomor 1D
CustomerName
Gustomor Phone.
Customer income
Gustomor Ago

Customer Gancer

image7.png
branch

branch_key
branch_name
branch_type

Novarmbar 5, 2008

a

item

-4

Shipping Fact Table

item_key
Sales Fact Table item_name
brand "
o type item_key
. supplier_type shipper_key ...
item_key =
branch_key from_location
location_key |, location | to_location
}
oo
province_or_state
shipper_key
shipper_name
location_key

E

shipper_type

image8.png
Untitled

Insert Modeling View Help

EhalbEo b P

Get el PowerBl SQL Enter Dataverse Recent | Transform Refres
S Gatav workbook datasets Server dats sourcesv | datav.

K izati »|[Fields »,
RIBBON Poa |

P Search

VISUALIZATIONS

FIELDS

os

FILTERS

Filters on this page

ot toyourrepor | SR :
A Ad dta feds here am E -]udg] bl = A
LOOme W
& 8 o 2 Fiters n sl pages Nz DE@E R
i it | e || emsee R | [[=R=N Y
[P &7 =

Values

Add data fields here

Drill through

Cross-report (

Keep all filters

Add arill-through filds here

(— VIEWS

Page 10f 1

image1.jpeg
THE HISTORY
OF THE DINII YNNIV

Germanic

ORIGINS —_— Danish Swedish

it b OldEnglish ~ Dutch Old Norse
daske dasko’ g bood orin
DASH BOARD
DEFINITION . "strike suddenly and violently” “a fiat usually rectangular piece of
50 material designed for a special purpose”
DASHBOARD
Protective board First car dashboard Stylised dashboard

A board on the front of a
usually horse-drawn vehicle to

Awooden panel separating the
engine from the steering

A panel extending across the
interior of a vehicle below the

DEFINITION intercept water, mud or debris wheel. It can also be equipped windshield and usually
dashed up by the horses with a box for the driver to put containing instruments and
hooves. his gloves down. controls.

Prevent coachman from mud Prevent passengers from Provide essential information
PURPOSE or other debris dashed-up being exposed to oil splashes, and controls to the driver.

from the horses hooves.

heat, and noise.

Management Report

The Mini Graph Management
Report is the first spreadsheet
dashboard that has been
created by Charley Kyd with
ASCl graphics

Allows the user to accurately
monitor various indicators in
order to make better decisions.

SELF-SERVICE Low Low Low

conTroL NonE Low Low

FuNCriONALITY wow
DECISION SUPPORT NONE NONE HIGH
useR CENTRIC T wow
usasiLTy ow

DATAVIZCLARITY.COM

image2.emf

image9.jpeg
Golrang System
GuaanSy15

image10.png
m

Power BI

